egc.model.node_embedding.structure_learning package
Submodules
egc.model.node_embedding.structure_learning.sublime module
Towards Unsupervised Deep Graph Structure Learning https://shiruipan.github.io/publication/www-22-liu/www-22-liu.pdf
- class egc.model.node_embedding.structure_learning.sublime.SUBLIME(nfeats, n_clusters, sparse: int = 0, type_learner: str = 'fgp', k: int = 20, sim_function: str = 'cosine', activation_learner: str = 'relu', nlayers: int = 2, hidden_dim: int = 512, rep_dim: int = 256, proj_dim: int = 256, dropout: float = 0.5, dropedge_rate: float = 0.5, lr: float = 0.001, w_decay: float = 0.0, epochs: int = 2500, maskfeat_rate_anchor: float = 0.8, maskfeat_rate_learner: float = 0.1, contrast_batch_size: int = 0, tau: float = 0.9999, c: int = 0, eval_freq: int = 100, n_clu_trials: int = 10)[source]
Bases:
ModuleSUBLIME:Towards Unsupervised Deep Graph Structure Learning
Args:
- fit(adj_csr, features)[source]
Fitting
- Parameters:
adj_csr (sp.lil_matrix) – adj sparse matrix.
features (torch.Tensor) – features.
- training: bool
Module contents
Graph Structure Learning Methods