"""Contrastive Loss
Adapted from https://github.com/Yunfan-Li/Contrastive-Clustering
"""
import math
import torch
from torch import nn
[docs]class InstanceLoss(nn.Module):
"""Instance Contrastive Loss"""
def __init__(self, batch_size, temperature):
super().__init__()
self.batch_size = batch_size
self.temperature = temperature
self.mask = mask_correlated_samples(batch_size)
self.criterion = nn.CrossEntropyLoss(reduction="sum")
[docs] def forward(self, z_i, z_j):
N = 2 * self.batch_size
z = torch.cat((z_i, z_j), dim=0)
sim = torch.matmul(z, z.T) / self.temperature
sim_i_j = torch.diag(sim, self.batch_size)
sim_j_i = torch.diag(sim, -self.batch_size)
positive_samples = torch.cat((sim_i_j, sim_j_i), dim=0).reshape(N, 1)
negative_samples = sim[self.mask].reshape(N, -1)
labels = torch.zeros(N).long().cuda()
logits = torch.cat((positive_samples, negative_samples), dim=1)
loss = self.criterion(logits, labels)
loss /= N
return loss
[docs]class ClusterLoss(nn.Module):
"""Cluster Contrastive Loss"""
def __init__(self, class_num, temperature):
super().__init__()
self.class_num = class_num
self.temperature = temperature
self.mask = mask_correlated_samples(class_num)
self.criterion = nn.CrossEntropyLoss(reduction="sum")
self.similarity_f = nn.CosineSimilarity(dim=2)
[docs] def forward(self, c_i, c_j):
p_i = c_i.sum(0).view(-1)
p_i /= p_i.sum()
ne_i = math.log(p_i.size(0)) + (p_i * torch.log(p_i)).sum()
p_j = c_j.sum(0).view(-1)
p_j /= p_j.sum()
ne_j = math.log(p_j.size(0)) + (p_j * torch.log(p_j)).sum()
ne_loss = ne_i + ne_j
c_i = c_i.t()
c_j = c_j.t()
N = 2 * self.class_num
c = torch.cat((c_i, c_j), dim=0)
sim = self.similarity_f(c.unsqueeze(1),
c.unsqueeze(0)) / self.temperature
sim_i_j = torch.diag(sim, self.class_num)
sim_j_i = torch.diag(sim, -self.class_num)
positive_clusters = torch.cat((sim_i_j, sim_j_i), dim=0).reshape(N, 1)
negative_clusters = sim[self.mask].reshape(N, -1)
labels = torch.zeros(N).long().cuda()
logits = torch.cat((positive_clusters, negative_clusters), dim=1)
loss = self.criterion(logits, labels)
loss /= N
return loss + ne_loss